Stratified mixture modeling for segmentation of white-matter lesions in brain MR images
نویسندگان
چکیده
Accurate characterization of white-matter lesions from magnetic resonance (MR) images has increasing importance for diagnosis and management of treatment of certain neurological diseases, and can be performed in an objective and effective way by automated lesion segmentation. This usually involves modeling the whole-brain MR intensity distribution, however, capturing various sources of MR intensity variability and lesion heterogeneity results in highly complex whole-brain MR intensity models, thus their robust estimation on a large set of MR images presents a huge challenge. We propose a novel approach employing stratified mixture modeling, where the main premise is that the otherwise complex whole-brain model can be reduced to a tractable parametric form in small brain subregions. We show on MR images of multiple sclerosis (MS) patients with different lesion loads that robust estimators enable accurate mixture modeling of MR intensity in small brain subregions even in the presence of lesions. Recombination of the mixture models across strata provided an accurate whole-brain MR intensity model. Increasing the number of subregions and, thereby, the model complexity, consistently improved the accuracy of whole-brain MR intensity modeling and segmentation of normal structures. The proposed approach was incorporated into three unsupervised lesion segmentation methods and, compared to original and three other state-of-the-art methods, the proposed modeling approach significantly improved lesion segmentation according to increased Dice similarity indices and lower number of false positives on real MR images of 30 patients with MS.
منابع مشابه
Quantitative Comparison of SPM, FSL, and Brainsuite for Brain MR Image Segmentation
Background: Accurate brain tissue segmentation from magnetic resonance (MR) images is an important step in analysis of cerebral images. There are software packages which are used for brain segmentation. These packages usually contain a set of skull stripping, intensity non-uniformity (bias) correction and segmentation routines. Thus, assessment of the quality of the segmented gray matter (GM), ...
متن کاملAn Automated MR Image Segmentation System Using Multi-layer Perceptron Neural Network
Background: Brain tissue segmentation for delineation of 3D anatomical structures from magnetic resonance (MR) images can be used for neuro-degenerative disorders, characterizing morphological differences between subjects based on volumetric analysis of gray matter (GM), white matter (WM) and cerebrospinal fluid (CSF), but only if the obtained segmentation results are correct. Due to image arti...
متن کاملAutomatic Brain Tissue Segmentation of Multi-sequence MR images using Random Decision Forests MICCAI Grand Challenge: MR Brain Image Segmentation 2013
This work is integrated in the MICCAI Grand Challenge: MR Brain Image Segmentation 2013. It aims for the automatic segmentation of brain into Cerebrospinal fluid (CSF), Gray matter (GM) and White matter (WM). The provided dataset contains patients with white matter lesions, which makes the segmentation task more challenging. The proposed algorithm uses multisequence MR images to extract meaning...
متن کاملModified Expectation Maximization Method for Automatic Segmentation of MR Brain Images
An automated method of MR brain image segmentation is presented. A block based Expectation Maximization Algorithm is proposed for the tissue classification of MR brain images. The standard Gaussian Mixture Model is the most widely used method for MR Brain image segmentation and Expectation Maximization algorithm is used to estimate the model parameters. The Gaussian Mixture Model considers each...
متن کاملMultigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images
We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonloc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NeuroImage
دوره 124 Pt A شماره
صفحات -
تاریخ انتشار 2016